Abstract: - We have talked about the Linear Programming in Mathematics. We characterize the Linear programming in various manner. Its Objectives, uses, significance and the a portion of the Methods to understand the direct framework. We have taken a case of direct framework from this present reality and explain it by Gauss' Jordan disposal technique (Reduced echelon form).
Keywords: - Gaussian elimination, Gauss-Jordan elimination, Variables, Matrix, A, B, C, linear system, Borjan, MATLAB etc.

Translating Real World Problem of Linear Programming

Abstract: - We have talked about the Linear Programming in Mathematics. We characterize the Linear programming in various manner. Its Objectives, uses, significance and the a portion of the Methods to understand the direct framework. We have taken a case of direct framework from this present reality and explain it by Gauss' Jordan disposal technique .
Keywords: - Gaussian elimination, Gauss-Jordan elimination, Variables, Matrix, A, B, C, linear system, Borjan, MATLAB etc.

INTRODUCTION

1)       DEFINITIONS:

Linear programming is a mathematical method that is used to determine the best possible outcome or solution from a given set of parameters or list of requirements, which are represented in the form of linear relationships. It is most often used in computer modeling or simulation in order to find the best solution in allocating finite resources such as money, energy, manpower, machine resources, time, space and many other variables. In most cases, the "best outcome" needed from linear programming is maximum profit or lowest cost.

2)         Objective:

In linear programming, the objective is always to maximize or to minimize some linear function of these decision variables.

3)         Uses

·         Linear programming is used to obtain optimal solutions for operations research.
·         Using linear programming allows researchers to find the best, most economical solution to a problem within all of its limitations, or constraints.
·         Many fields use linear programming techniques to make their processes more efficient.

4)     Importance of Linear Programming

Many real-world problems can be approximated by linear models. Importance of linear programming. With linear programming we can easily solve business problem. It is very benefited for increase the profit or decrease the cost of business. Linear programming solve problem under different limitions and conditions , so It is easy for manager to work under limitations and conditions  There are well-known successful applications in
a.  Manufacturing
b.  Marketing
c.   Finance (investment)
d.  Advertising
e.  Agriculture

5)         Methods to solve a linear system problem:

I.      Gaussian elimination

Gaussian elimination is an efficient method for solving any linear system using systematic elimination of variables.

II.Gauss-Jordan elimination

In linear algebra, Gaussian elimination is an algorithm for solving systems of linear equations. ... Using row operations to convert a matrix into reduced row echelon form is sometimes called GaussJordan elimination.

III.                    Inverse Method.


Problem

                A Company produces three type of bikes (A, B, & C). In these bikes, each article has three quality of product, 1) Standard Quality, 2) Normal Quality, & 3) Low Quality. The products of bikes A Respective to the above quality are 2, 4, & 1 costs Rs.15. And products of bikes B Respective to the above quality are 2, 3, & 2 costs Rs.21. And products of bike C Respective to the above quality are 3, 2, & 2 costs Rs.19.
          Find the costs of each quality by using the Gauss-Jordan elimination method of Linear System.

Solution

                Let A, B, C are three articles, having x1, x2, x3. And the values of these are A= 2,4,1,   B= 2,3,2,   C= 3,2,2. Their Costs are 15, 21, 19 respectively.
Can be written as:
                2X1+ 4X2+ 1x3= 15
                2x1+ 3x2+ 2x3= 21
                3x1+ 2x2+ 2x3= 19
We can write the problem in Matrix form:    
             4     2     1                               x1                                                         15
A=         2     3     2                   X=       x2                                           B=         21
  3     2     2                               x3                                                           19


           2     4     1    15
Ab=    2     3     2    21
           3     2     2    19


Performing Rows operation to solve:


             1     0     -1    -4
R=        2     3     2    21              by R1 – 2R3 
             3     2     2    19



             1     0     -1    -4
R=        0     3     4    29              by R2 – 2R1 
             0     2     5    31              by R3 – 3R1  


    
             1     0     -1    -4
R=        0     1     -1    -2              by R3 – R2
             0     2      5     31



             1     0     -1    -4
R=        0     1     -1    -2              by R3 – 2R2 
             0     0      7     35



             1     0     -1    -4
R=        0     1     -1    -2              by R3 /7
             0     0      1      5



             1     0     -1    -4
R=        0     1      0     3              by R2 + R3 
             0     0      1     5



             1     0      0     1
R=        0     1      0     3    
             0     0      1     5



X=  1,       Y= 3,         Z= 5


MATLAB Solution


>> T=[4,2,1,15; 2,3,2,21; 3,2,2,19]

T =

     4     2     1    15
     2     3     2    21
     3     2     2    19

>> W=rref(T)

W =

     1     0     0     1
     0     1     0     3
     0     0     1     5

>> X=rank(W)

X = 3

Result:

                The problem which is taken is solved b Gauss’s Jordan Elimination method. The Solution is correctly solved by reduced echelon form. We have the cost of each quality is below:
x1= 1
                   x2= 3
                   x3=5                          With Rank of 3

ACKNOWLEDGEMENT:

                Specially thanks to my respected Professor Muhammad Shahbaz Malik from Dunyapur.
Also, thanks to my fellows, they helped to make this Assignment.

References


·       LINEAR PROGRAMMING: FOUNDATIONS AND EXTENSIONS Second Edition
(Robert J. Vanderbei)
·       Intro to OR (F.Hillier & J. Lieberman)
·       Linear Systems and Gaussian Elimination
(Eivind Eriksen)